If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9x)^2+(16x)^2=55^2
We move all terms to the left:
(9x)^2+(16x)^2-(55^2)=0
We add all the numbers together, and all the variables
25x^2-3025=0
a = 25; b = 0; c = -3025;
Δ = b2-4ac
Δ = 02-4·25·(-3025)
Δ = 302500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{302500}=550$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-550}{2*25}=\frac{-550}{50} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+550}{2*25}=\frac{550}{50} =11 $
| 12x-13=5(2x-2)+2x-3 | | 7a^2=10a+8 | | X+3x+(3x+10)=430 | | 2(6-y)/5=-y | | X^2-18x-45=-5 | | 6-3(2a-4)=-18 | | 5/7=x/8 | | A^2+20a-93=2 | | -7(2x-9)+7=-14x+70 | | 250-h=113 | | A^2+12a-90=8 | | 3x=16+25 | | 5(4^x)=45 | | 10-t=4 | | 11n+56=100 | | -8x-14=(-2-4x)+4x | | y=-0.2+6.1 | | 33=31-b | | 25s=35 | | 40+12x-16x2=0 | | 5.4+14.6-10.1t=12.8-3.5t | | -30+x=18 | | (3x+9)+(2x+4)=180 | | 0.18(y-1)+0.02y=0.14y-1.5 | | 5u-17=7(u-5) | | 3x+(8x15)=180 | | 10x+3+26x-3=180 | | -4(a+6)=-40 | | -4/9x=16/24 | | (x-8)(x-4)=x2-12x | | 2n+10=4n+2n | | -9=a-14 |